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Abstract

At the present time RANS calculations ar¢ widely used to determine the time averaged flow over bodics
of arbitrary shape. However they do not provide the time dependent or spectral information required for
the analysis of ship hull vibration, radiated noise and sonar performance. The objective of this study is to
caleulate space time velocity correlation functions and surface pressure wavenumber spectra in turbulent
shear flows using information from time averaged RANS calculations, so that the dctails of high fidelity
time averaged flow can be applied to hydroacoustic and structural vibration problems.

Recent advances in numerical techniques have resulted in efficient methods for calculating the Reynolds
average statistics of the flow around most bodies. These calculations provide the mean, time invariant
flow as well as the local turbulent kinetic energy and dissipation. However they provide no information
on the higher order statistics or spectral contcnt of the unsteady part of thc flow. For many applications,
especially those involving sound radiation, the local turbulent kinetic cnergy docs not provide the
information that is required. Ideally, a procedure for estimating the two point correlation function of the
veloeity fluctuations throughout the flow is needed.

In a recent study (Glegg et al(2010)), a method for calculating the surface pressure spectra below a
turbulent boundary layer was dcveloped which is based on the solution to the unsteady Euler equations
and the Reynolds averaged Navier Stokes equations. It was shown that the unsteady vclocity in a two
dimensional linearized shear flow could bc modeled using a distribution of vortex shcets. Each vortex
sheet is convected at the local mean flow speed and its distribution can be used to specify all three
components of the turbulent flow. The unsteady pressure, the two point veloeity correlation funections, the
turbulent kinetic energy and surface prcssure wavenumber spectra was obtained directly from this
equation in terms of the mean square value of the vortex sheet strength. Since RANS calculations give the
distribution of turbulent kinctic energy in the flow, it was possible to invert the spatial distribution of
turbulent kinetic energy to obtain the vortcx shect strength, and usc the rcsult to calculate all the statistical
details of the unsteady flow. However, in this approach the specification of a turbulent energy spectrum
that scales on the dissipation length scale was required and this is difficult to model universally.

In the first part of this study (see Part Ia) the linearized approach deseribed above was extended to
turbulent flows in two dimensional wakcs described by the Orr Sommerfeld equations. Wake flows are
more challenging than two dimensional boundary layers because the flow is continuously evolving in the
downstrcam direction in a self similar manner. The theory was modified to allow for self similarity and
the results were compared to experimental data of the two point velocity correlation functions in turbulent
wakes (Devenport et al, 2001) with some success.

This approach is then used to predict rotor stator interaction noise that is causcd by the wakcs from
upstrcam blades impinging on downstream stator vanes. The turbulence modeling developed in Part la is
used in Part 1b to specify the turbulence in the inflow to the stators. Acoustic predictions show how the
sound radiation is affected by the cutting angle of the wake relative to the lcading edge of the blades.

In the second part of this report (Part II) the acoustic radiation from a turbulent flow over a step is
analyzed. This work helps to explain some of the differences between the measurements by Catlett (2010)
in a companion study at Virginia Tech and the LES based predictions presented by Ji and Wang(2010).
The previous studies of the problem had used a low frequency approximation for the Greens function.
The work presented herc shows that, at the frequencics and flow Mach numbcrs considercd by
Catlett(2010), the low frequeney approximation leads to incorreet predictions of the far field sound. The
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exact Greens function for a step is given in Part II of this rcport and the importance of the diffracted field
is identified.

Part 111 of this report focuses on flat plate boundary layers and the flow downstream of a forward facing
step as measured Dr. William Devenport in a companion study at Virginia Tech. The previous analyses
used the inviscid form of thc linearized equations of motion to model the turbulent flow and in the last
year the modeling has been improved to include viscous terms. In addition the non linear interactions are
included as source terms for fully developed turbulence. The results have been compared to the
experimental measurements reported by Awasthi et al (2011) and predictions are made of thc velocity
spectra and the surface pressure spectra.
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Part 1a:Turbulence Modeling for a Plane Wake

1.1 Introduction

In a recent study (Glegg et al(2010)), a method for calculating the surface pressure spectra below a
turbulent boundary layer was developed which is based on the solution to the unsteady Euler equations
and the Reynolds averaged Navier Stokes equations. It was shown that the unsteady velocity in a two
dimensional linearized shear flow could be modeled using a distribution of vortex sheets. Each vortex
sheet is convected at the local mean flow speed and its distribution can be used to spccify all thrce
components of the turbulent flow. The unsteady pressure, the two point velocity correlation functions, the
turbulent kinetic energy and surface pressure wavenumber spectra was obtained directly from this
equation in terms of the mean square value of the vortex sheet strength. Since RANS calculations give the
distribution of turbulent kinetic energy in the flow, it was possible to invert the spatial distribution of
turbulent kinetic energy to obtain the vortex sheet strength, and use the result to calculate all the statistical
dctails of the unsteady flow. However, in this approach the specification of a turbulcnt cnergy spcctrum
that scales on the dissipation length scale was required and this is difficult to model universally.

In the first part of this study the approach described above was extended to turbulent flows in two
dimensional wakes. Wake flows are more challenging than two dimcnsional boundary layers bccause the
flow is continuously evolving in the downstream direction in a self similar manner. The theoretical
approach was modified to allow for self similarity and the results werc compared to experimental data of
the two point velocity correlation functions in turbulent wakes (Devenport et al, 2001) with some succcss.

1.2 Theory for the turbulence of a wake flow

We will eonsider small veloeity perturbations (#,v,w) in a parallel shear flow defined, in catesian
coordinates (x,y,z), by the mean veloeity U(y) in the x direction (see figure 1). The linearized
form of the Navier Stokes equations and the continuity equation ean be used to obtain the Orr
Sommerfeld equation for the upwash component of the veloeity (see for example Hallbick 1996)
(1

U N 1 _,
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For a turbulent flow which is time stationary, but may not be homogencous in the x direction, we
will eonsider the solution of this equation in the form

(2)
v=Y ayt (e [ v = L(x)
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where «, are the eigenvalues of the solution and are assumed to be slowly varying in the flow
direction, so the flow is at least locally homogeneous.

The other components of the veloeity can be obtained by considering the vorticity in the y
direction given by
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Combining this with the continuity equation (Hallbaek,1996) then gives the mode shapes for the
other two velocity eomponents as
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where A’ =a + 7. To bring the system to closure we use the vorticity equation for the 7
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component which gives
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and at high Reynolds number this gives
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The solution to this equation is then readily obtained by assuming that the vortiety is initially
zcro and gives the modes of the vortieity in terms of thc upwash veloeity modes
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Hence cquations (2), (4) and (7) form a elosed set of equations which can bc solved to obtain
each eomponent of the veloeity perturbations in terms of a single set of eoefficients a,. The
vorticity modes are dependent on x, but the x dependenee is small for self similar flows (such as
2D wakes,axisymetrie wakes and mixing layers) whieh satisfy the eondition that
(®)
xoU W
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where W and A are constants and L is the wake width.
The turbulent shear stresses ean be obtained by taking the expected valuc of the veloeity

components and noting that if the mode amplitudes are uncorrelated then the veloeitics arc
statistically stationary in time and locally homogeneous in the x and z directions. We also need to



intcgrate over all frequencies and spanwise wavenumbers to obtain the fluctuations at a point.
Applying these steps leads to a description of the turbulent stress in the upwash direction as

)
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similarly for the other two components of the flow we have,
(10)
= = 2
0ut0.=[ [ X 4@ /)’){U‘"’( y+ 8. (; %U) V()8 (0%, y) }dwdﬂ
[N &
: W)
Lr( )
=l 30y) I
the shear stress is then
(1)
X aL n
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To a good approximation Re(g) = ) |*, so we can simplify (10) and specify the tke as
(12)
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If we ean solve this equation for the unknown eoeffieients 4, then we ean use the result to
obtain each of the stresses and the two point correlation of the veloeity fluetuations. For
example the two point eorrelation of the upwash velocity is given as

(13)
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The analysis given above deseribes how all the turbulent flow quantitics of interest ean be
speeified in terms of a single set of mode amplitudes 4, . To bring the system to elosure it is
neeessary to invert any one of the above equations to obtain the mode amplitudes. However the
mode amplitudes are also dependent on the frequeney and the spanwise wavenumber and so it is
also neeessary to assume so form for the energy distribution of the turbulenee.

1.3 Approximate Solution for the Continuous Modes

In many flows, especially the wake flow which is of interest hcre, wc can make the
approximations that the Reynolds number is very large and that 42U >> U /dy” and so the last



two terms in equation (1) are small in comparison with the other terms giving the approximate
equation

(14)
2. (n)
(w—a,,U)(aaz —— Ry =0
The solution to this cquation is obtained dircetly using
(15)
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from which it follows that
(16)
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wherc y, is the solution to the equation w=a,U(y,) , G(yly,) is the Greens function for Poissons
equation which satisfies the boundary conditions of the flow, and | is a scaling factor determined
by (2) and is

7
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It is then relatively simple to complete the integrals needed in equations (9)-(13) using these
modes and the approach given by Glegg et al 2009.

1.4 Determination of Mode Amplitudes

One of the important features of the turbulent velocity modes in the wake is that they can also be
used to define the turbulent kinetic cnergy the wake, as given by equation (12). The turbulent
kinetic energy is an output from RANS calculations and so, in principle, we can estimate A4, if
U™ and V™ are known. The approach used here is the solve the Orr Sommerfeld equations for
the wake flow to obtain the modes, and use these as a basis for solving of the mode cocfticicnts.
Howecver, some additional modeling is required to give the spectral content of the modes. To
achicve this we assume that the coefficients A,(w,f) can be written as the product of a universal
energy spectrum E(AL) and a mode amplitude in the form

(18)
A (0,B)=A E(,L) A =Jol+ B

Thc universal energy spectrum is modeled by a von Karman energy spcctrum (sec Glegg et al
(2008)) and is consistent with the encrgy cascade of turbulent scales. It depends on a lengthscale



L which also has to be modeled or calculated from the dissipation in the RANS calculation
(Glegg et al (2008)). If the turbulent kinetic energy is known at y,, locations in the flow and the
mode-shapes are determined by the solution to the Orr Sommerfeld equation then we can use a
collocation scheme to determine the mode amplitudes by solving the equation

(19)
) o
0= A0 Cu=3] [ EALLI"G,.0BF dbdo

n=1
Once thesc coefficients have been determined it is possible to predict all the two point statistics
of the flow and the turbulent velocity spectra.

1.5 Numerical Verification of Results

This approach has been used to analyze the turbulent flow in a blade wake based on the
measurements of Devenport et al (2001). These give the details of all three velocity components,
their two point statistics and spectra as a function of y and x for the wake behind a NACA 0012
airfoil at zero angle of attack at a Reynolds number of 3.28x10° . The turbulent kinetic energy
(tke) distributions are given at multiple locations downstream of the trailing edge and these are
found to be self similar and to collapse onto a single line as shown in figure 2. Using the
approach given above the mode amplitudes are obtained from the distribution of tke and are
shown in figure 3. To verify that the approach is valid we have used these mode amplitudes to
calculate the distributions of turbulent stresses o,, and 0,,, and the two point correlation function
R,.(y,Ay) of the velocity in the y direction at different reference locations y across the wake. The
results are shown in figures 4-6 and are successfully compared to experimental results. Figure 6
is a good test of the approach because the correlation function is not symmetric for reference
locations that are displaced from the wake centerline.

In Figures 7 and 8 the estimated spectra of the v and u velocity components are given, and show
reasonable agreement with the measurements.

1.6 Conclusions

In this study we have devcloped a mcthod for extracting two point statistics from the distribution
of turbulent kinetic energy in self similar flows. The approach is to develop a modal description
of the turbulent velocity fluctuations based on the solution to the Orr Sommerfeld equation and
usc this to model the distribution of turbulent kinetic energy within the flow in terms of a sct of
unkown coefficients. If the distribution of the tke is available, cither from measurements or
RANS calculations, then the model can be inverted to obtain the unknown coefficients.

This approach has bcen applied to the flow in a turbulent wakc based on the measurements of
Devenport e al 2001 with very encouraging rcsults. The modcl has successfully predicted the
turbulent stresses and the two point correlation function of the upwash velocity fluctuations.



Part 1b:Turbulence Modeling for Rotor Stator Interaction Noise

1.7 Introduction

Turbomachinery broadband noise is often dominated by the turbulence in the rotor wakes
interacting with downstream stator vanes. The accepted approach for analyzing this problem is to
model the turbulence incident on the stator vanes by a locally homogeneous turbulent flow
whose spectrum can be defined by a von Karman or Liepmann model, with a specified
turbulence intensity and length scale. This is a very simplistic model of the complex turbulent
flow downstream of a rotor, which is dominated by rotating wake flows, secondary flows and
end wall effects. In an earlier paper Glegg and Devenport (2001(b)) proposed a more general
approach to turbulence modeling in complex flows based on proper orthogonal decomposition of
the unsteady flow incident on the stator. The limitation of this approach was the determination of
the proper orthogonal modes. In this paper we will revisit this problem and show how the modes
of the flow can be obtained from the solutions to the linearized Navier Stokes equations, or in the
case of quasi two dimensional flows, the Orr Sommerfeld equations. We will illustrate the
procedure by showing results for a simple idealized model of an oblique blade wake interaction.

1.8 Sound Radiation from an Oblique Blade Wake Interaction

An oblique blade wake interaction occurs when the wake from an upstream blade is cut by a
downstream blade at an angle, as is typical of a rotor wake stator blade interaction. The wake is
modeled with a two dimensional mean flow profile which does not vary along the wake axis, and
the cutting angle is defined as the angle between the spanwise coordinate of the blade and the
axis of the wake (see Figure 1). The wake coordinates are specified as (x,y,z) and the mean flow
velocity in the wake is U(y) in the direction of the x coordinate. The blade is defined in terms of
coordinates (x,,y,,z,) where x, is the chordwise direction and y, is the spanwise direction. The
acoustic field from the blade wake interaction can be calculated from the unsteady loading on the
blade surface, which, in ducted fan applications, can be coupled with the duct modes using the
approach given by Glegg and Walker (1999). Here we will simplify the problem by considering
the radiation from the blade in the absence of the duct. This gives an idealization of a rotor wake
stator interaction which is suitable for identifying the principle features of turbulent wake flow
that cause broadband fan noise from rotor stator interactions, without the complexity introduced
by the blade response function for a high solidity stator in a duct. .

Amiet (1974) gives the solution to the general problem of an unsteady flow incident on a blade
in a uniform mean flow. The acoustic field is defined in terms of the unsteady loading on the
blade surface, which is determined by the blade response to a harmonic gust. If the incoming
gust has an upwash component on z,=0 of the form

— iy X, +iVY,

w €

(4]

then Amiet’s blade response function gives the unsteady loading on the blade as
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F(x,.,y,,t)=w,g(x,.Y,.V)e

For the oblique blade wake interaction problem we will model the unsteady flow in the wake by
the solution to the Orr Sommerfeld equation for the unsteady flow in the wake. This gives a
modal solution for the unsteady flow in the wake, which is of the form

uxyz0=Y, [ | a(@.pu” (o B """ dpde
n=l o

foe—s

where a,(x) are the eigenvalues of the solution and can be assumed to be slowly varying in x, and
u” are the eigenvectors or modes of the solution. This expansion of the velocity has some
important features that follow from the statistical nature of the turbulent flow. We can assume
that the turbulent velocity fluctuations are stationary in time and homogeneous in the z direction.
Within the limit that a,(x) is slowly varying we can also assume that the turbulent velocity
fluctuations are homogeneous in the direction of the flow. It follows that the coefficients
a,{ w,P) are uncorrelated for different values of n,w and B and consequently, that the uncorrelated
modes for the wake flow are

uln)(y)e-iwuxa,,(x)niﬁz

We can then proceed to analyze the oblique blade wake interaction problem in exactly the same
way as was done by Glegg and Devenport (2001(a)), defining the upwash from the mode
velocity and the cutting angle of the wake, and calculating the unsteady load and the acoustic
radiation for each mode independently to give the acoustic pressure at an observer located at x as
p™(x,w).Since each mode is uncorrelated the spectral density of the acoustic pressure is

Spp(x,w)=i T A (0,8 p™(x,0)F dB An(w,ﬂ)=%5x[|an(w,ﬂ)|2]

n=l —o°

The important feature of this result is that the acoustic field for each mode can be readily
calculated, and the characteristics of the acoustic field can be related to the features of each
mode, but it remains to determine the mode amplitudes.

1.9 Acoustic Predictions

Using the results of Part 1(a) it is possible to carry out acoustic predictions for the sound
radiation from a blade wake interaction at different cutting angles. In figure 9 we show some
preliminary results of the effect of cutting angle on the far field noise. We note that as the cutting
angle is reduced the radiated sound level is increased significantly. This is caused by two
different effects. First, at smaller cutting angles the wetted surface area of the blade wake
interaction is larger, and secondly the upwash is impacted by different components of the
turbulent velocity as the cutting angle is changed. For a perpendicular blade wake interaction
(90 deg cutting angle) the upwash on the blade is determined by the z component of the
turbulence in the wake. For a 45 deg cutting angle the upwash is determined equally by the z and
the y component of the upwash. To accurately assess the importance of the cutting angle on the

11



radiated noise it is necessary to determine the relative amplitude and wavenumber spectra of
these two different velocity components. The modeling approach described here allows this to be
done by utilizing the solution to the Orr Sommerfeld equation for the unsteady flow in the wake.
This 1s a far more robust approach than one that assumes a homogeneous turbulent flow model.

1.10 Conclusions

This paper describes a new approach for describing inflow turbulence for leading edge noise
problems. The unsteady inflow is modeled by the Navier Stokes equations linearized relative to
the mean flow velocity. The resulting solutions give the relative magnitudes of all velocity
components throughout the flow, and this provides a model of the local tke in the flow that can
be matched to the tke calculated by RANS models. The resulting unsteady flow model can then
be used to carry out acoustic predictions of leading edge noise. This approach has been shown to
successful match measurements of two point correlations and spectra of the turbulent flow in the
wake of a NACA 0012 airfoil, and the application to leading edge noise has been demonstrated.
The extension of this method to ducted flows and the wake of a rotor is also possible based on
the model of the linearized flow in a circular duct given by Atassi (2005).
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Figure 1: the coordinate system for a simple wake incident on an isolated blade
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Figure 2: The collapse of the tke in a turbulent wake behind a NACA 0012 airfoil as a function of
displacement from the centerline. The data is self similar an collapses on the wake half width L. The mean
line is the data fit obtained from the modal solution.
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Figure 3: The mode amplitudes calculated from the distribution of kinetic energy
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Part 2: The Tailored Greens Function for a Step

2.1 Introduction

In a recent article Ji and Wang(2010) described detailed Large Eddy Simulations (LES) of boundary layer
flows over forward and backward facing steps. One of the objectives of this study was the calculation of
the sound radiated by the interaction of the flow with the step. To carry out their calculations Ji and Wang
made use of Howe’s(1989) low frequency approximation for the Greens function tailored to the step
geometry. This Greens function gives a far field directionality that is equivalent to a streamwise dipole
and predicts there will be a null in the acoustic far field for an observer directly above the step. In contrast
experimental measurements (Farabee and Zoccola(1998), Catlett(2010)) indicate that this is not the case
and the directionality of the sound is relatively weak at low frequencies. Catlett(2010) also observed that
there was an interference effect in the spectrum at high frequencies that could not be predicted by the low
frequency approximation. In this paper the far field approximation for the Greens function tailored to the
step geometry will be derived by applying the Weiner Hopf method. The result shows that the sound in
the acoustic far field is only equivalent to a dipole at very low frequencies, and it has very different
charactcristics at higher frequencies. The far field sound spectrum can also be cstimated and it is shown
that the interference effect observed by Catlett(2010) is correctly indentified.

2.2 The Greens Function

The geometry for a step of height 4 is shown in Figure 1 in terms of the Cartesian coordinates (v;,y2,v;).
The origin of the coordinate system is at the bottom of the step and the surface is defined by y,=0, y,>0
and y,=b,y,<0. To calculate the far field Greens function we will use the adjoint method, which utilizes
the principle of reciprocity. In this approach the source is placed at a location in thc acoustic far field and
the observer is placed in the vicinity of the step. The advantage of using this method is that the adjoint
Greens function can be obtained by calculating the field scattered by the step due to sound from the far
field source, and, local to the step, the incident field is well approximated by a plane wave. The Greens
function for the source close to the step and the far field observer is then simply the adjoint Greens
function with the source and observer positions reversed.

In the adjoint problem the source is placed at x; and the incident wave is given by

exp(ikr-ikxy;)/4nr where r=|x| is the distance of the source from the bottom of thc step and & is the
acoustic wavenumber at the frequency . The adjoint Greens function which satisfies the non penetration
boundary conditions on y,=0 is then given by

(1

tkr—ikxvy/r—ikx vy /r

G,(y, | x;) = —————cos(kx,y, /r) r>>lyl
2rr

To satisfy the boundary conditions on the step we need to add solutions that correct for the non
penetration boundary condition on the surfaces y,=b,y,<0 and 0<y,<b, y,=0. We will trcat these as the
sum of two separate corrections G, and G,. First wc define G, as the solution that corrccts G, to match the
boundary conditions on the uppcr surfacc of the step, so it has the boundary conditions (scc figure 2)

(2)
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l:aGl :| =0 [ﬁ + ﬁ] =0
ayz v, =0 a'v2 ay2 vy =h.y <0

Secondly we define G; as the solution that corrects G,+G to match the boundary conditions on the face
of the step, so it has the boundary conditions (see figure 3)

6. _, 56, L 96, 3G, 3G, L
a}’z y, =0 a’v2 vy =b.y, <0 ayl ayl ayl 0<y, <b.y, =0

The solution for G, is obtained from the result given by Noble(1958) for the scattering of sound by a semi
infinite two dimensional duct. If we represents the Greens function G, as the sum of two waves incident
from the angles @ and -6, where cosBcos¢=x,/r, sinBcos¢g=x,/r and sing=x3/r. Then we can writc

3)

4

ik r=ikesyy/r

G,, = A(e-ik ¥1€080-ik,y, siné + e—ik.,hcoseﬂk.,."z sine) A= T__ p = kSin¢
nr

and use the result given by Noble (1958) for scattering of plane waves by two semi infinite plancs. The
result is given by Noble’s equation 3.25 as

(3)
e e —cosh(yy,)e™”” O<y,<b
G == | S@Eyy)e™da  Egy)={ o :
(A sinh(yb)e " b<y,
and
(6)
S (o) = isin@sin(k,bsinf)
- b(1 +cosO)L, (k, cosO)L_(a)a—k,(a—k, cosb)
(N
3 ~yb
R N Ly y=(a-k,) (a+k,)"

yb

The choice of branch cut for the square roots is important and we choose the branches where
Rc((o&k,,)l 2)>0. The subscripts + represent functions which are analytic for Im(o) greater than or less
than zero respectively, and specifics of L. and L. will be discusscd later.

The next step is to determine the second correction which ensures the velocity on the step face is zecro. We
notc that the sum of G, and G, result in waves which propagate from right to left along the duct defined
by 0<y,<b, y,;<0 ( see Figure 3). To cancel the velocity at y,=0 wc introduce a wave which propagates
from left to right along the duct so that the boundary condition is satisfied. The new wave will also be
transmittcd across the duct termination and propagate out of the duct and so will affcct the region of
interest. This problem is also discussed by Noble and for a wave B,cos(nn(y,-b)/b)exp(iky;), (Where
K,=(ko'-(nz/b)*)"”, and has a positive imaginary part) propagating along thc duct. The acoustic ficld is
given by Noble equation (3.34) as

(8)
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=

cos(nm(y, — b) / b)e™”

[ =]

B : s +it
';0 n +i(ko+’(n)L.(—K,,) I (a+ko)L+((X)‘COSh(‘}’y2)e_,m_lda
2 2 y(a+x,)sinh(yb)
O<y,<b
and
%)
o0 lb oo+l (a+k )L (a)eyb N
G, =Y B,| -2k, +x,)L (K AT I i
’ ,,g‘o "( 27r( b ")_NJ;" y(@+K,) d Y

To obtain the unknown coefficients B, we evaluate the field in the dueted region. Noble shows that by
evaluating equation (4) we have

(10)
- Z C,, cos(mn(y, - b)/ b)e ™

m=0

[G,+G,]

0<y, <b.y <0

where C,, represents the residue at the poles of the integrand of (5) which lie in the upper half of the

complex plane and are given in the appendix. Similarly we can evaluate (8) in the dueted region. The
solution includes the waves propagating from left to right and the waves which are reflected from the duct
termination at y,=0, and ean be expressed as

(11)
(G, ]M: b = i i B, (5,,,,,e"‘"~" +R, e )cos(mlr(_v2 —b)/b)

m=0 n=0

where the rcflection coefficients R... are also given in the appendix. Using (10) and (11) in the last of the
boundary conditions (3) and equating terms gives

(12)
D, B0~ R,)=C,
n=0
If this series is truncated to a finite number of terms then this equation can be solved for the coefficients
B,, giving the complete solution for G,.

2.3 Approximate Solutions

At very low frequencies we can show that L.(k,)~/ and B,~C,/2=A and. Also the series expansion for G;
is dominated by the »=0 term and so for y,>b we ean approximate

(13)
G = _iAkob 5 L+(a) e—:av,—y(\;—h)da
2
n —oo4il y
Applying the same approximations to G, in the region y,>b , and utilizing equation (7) gives
(14)
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_iAk,b(1-cos8) (" YL, (o)
4 (a—k,)a—k, cos8)

—oo+iT

—iaw=y(y=h) do

G,

At moderate frequencies where k,b=1 the situation is quite different. In this case we find from numerical
evaluation that B,~C, and that B,<<B,, but we can not approximate the other terms. Then, for y,>b we
obtain

(15)
_ “2iAsin(k,bsinO)L_(=k,) "(* L,(@) JE—
> msin@L,(k,cosO)L (k) 7. ¥
and
(16)
_ _iAsin@sin(k,bsin6) “j"’ YL, (@) .
' m(l+cosO)L,(k,cos8) . (a—k -k, cos)

and wc note that the scaling on &, and dircctionality associated with these functions is quite different from
the low frequency approximation.

2.5 Discussion

The sound radiation from turbulent flow near rigid surfaces can be evaluated by using Lighthills acoustic
analogy. The sound sources are specified by Lighthills stress tensor and thc acoustic ficld is given by
(Goldstein (1976))

(17)
’G

dv
dy, 9y,

pix.o= [ T,0,.0)
)

where G is a tailored Grecns function that satisfies the non penetration boundary condition on all the
surfaces. The radiation efficiency of the sound sources is therefore given by 8°G/dv,dy; ,which, for flow
over a step is given by the Greens function defined above. If we cvaluate °G,/dydy; it is found that the
acoustic radiation scales as &° and this Icads to a sourcc of quadrupole order. In contrast if we evaluate
&’G,/dy,’ we find that this simple scaling is not present. If we model the Lighthills stress tensor for a
turbulent eddy convetced in the y, direction as

(18)
T, @)= T,e ™" 8(y, = h)f
wherc h>b then, and 7 is a length scalc, then using the low frequency approximations we obtain
(19)
=2i ¢ . - =
p!ci(xi’w) = ( ZIAk,,b;q.(w/U) ](_(w/U)ZT‘“ —I(CD /(]),)/(.7".2 + y:TZZ)
| 1- (1-cos@)w /U +k,) T
(w/U-k,cos8)
where
(21)
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¥, = ,/(m/U)z -k

At very low Maeh numbers where w/U> >k, we ean approximate %,~aYU and it follows that
(22)

p'cl(x,,0) = (<2iAk,bcos8)(w! /UL, (@ 1 U)(~T;, —iT,, +T,)

First we note that this result has the eharaeteristies of a streamwise dipole, sealing with k, and having a
direetionality of cosé. The sealing on flow speed ean be obtained by noting that Tj; seales as pU’ and k,
scales as Ma¥U where M=U/c,, and ¢, is the speed of sound. Then at eonstant Strouhal number (wb/U)
the acoustic pressure seales as U’ and the acoustic power output seales as U°.

For the higher frequencies the sealing is quite different. Equations (15) and (16) show that the sealing on
frequency depends on sin(k,bsin6) and L.(k,cos8), so the field no longer has the eharacteristies of a
dipole.

The eomplete charaeteristies of the directionality of the sound generated by flow over a stcp can be
ealeulated directly from
(23)

p'cj('xi’w) =
{ 2iAsin@sin(k,bsin)@ /U +k,) .5 Bn(rc,,+ko)(w/U+ko)bL_(—Kn)}

(1+cos@)L,(k,cos@) (@ /U -k, cos) ZO‘ (/U +K,)
X (¢ /}’,,)L+(a)/U)(—(a)/U)27'"“ -ilw/U)y,T, +yffn)e—mh—b)_

This result has been evaluated to show the directionality of the sound field at differcnt non dimensional
frequencies k,6=0.01,0.1,1. For a backward facing step in a low Mach number flow (M=0.02) are shown
in figure 4. At low frequencies the direetionality has a minimum at 8=90° and is similar to a dipole
orientated in the direction of the flow. At high frequencies the direetionality is impacted by interfcrence
effeets and is almost omnidireetional. Similar results are shown for a forward faeing step in Figure 5,
(obtained from equation (23) with U replaced by ~U) and it is hard to distinguish the difference. However
at higher Mach numbers (M=0.2) the direetionality is different as shown in figures 6 and 7, and the effeet
of flow direction is morc marked with nulls pointing towards the dircction of the flow.

Figure 8 shows the frequency dependence of the field at three different obscrver angles for a forward
facing step at a Mach number of 0.2. It is impotant to note the interference dip that occurs when
k,bcosB=r and the lack of collapse of the aeoustic efficieney onto a single eurve. This indieates that
sealing of experimental data on a single frequency parameter could be unsueeessful.

In Figure 9 show the speetrum of the far field sound is shown assuming a souree spectrum which seales as
(k,hy""” for an 11 mm step and observer positions that eorrespond to those measured by Catlett(2010). An
arbitrary scaling factor has been added to align the plots so this is not an absolute prediction. However he
spectra show the interferenee dip and resonances at frequencies above 10kHz which were observed
cxperimentally by Catlett (2010) and there is some consisteney between the measured levels at different
angles at low frequencies.
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2.6 Conclusion

The results given above discuss the sound radiation from turbulent flow over a stcp. It is concluded that
the sound radiation is a consequence of scattering mechanism that can be modeled from solutions
prescnted by Noble for scattering by parallel semi infinite plates. At very low frequencies the far field
sound has the characteristics of a streamwise dipole and the sound from turbulent flow in the vicinity of
the step scales with the sixth power of the flow velocity. At higher frequencies the there interferencc
effects become important and the spectrum exhibits an dip at angles where k,Asin@=nx. The directionality
and spectral characteristics are similar to those measured experimentally by Catlett(2010).
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Appendix

The cocfticicnts C,, are obtained from (5) as

B 2Asin(k bsin 6)
"k bsinOL, (k,cosO)L_(k,)
B —2Asin@sin(k, bsin @)L, (x, Y(mr)’
"k, b(1+cosO)K, —k,cosO)K, —k, b L, (k,cos)

m m

m>0

Similarly we obtain for the reflection coefficient:

R = —SI"(K"" it ka )(K" i ko )L_(_K")L+ (K,")
Km(Knr i KII)

mn

where g,=1 for m>0 and €,=0.5.
The Split Function

Following Noble p104 we can define the split function
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L.(a)= (1:[{((1 —(k,b/nm)*)"? —iab/mr}e‘“”"")

n=|

xexp[—ia—b(l -C+InQr/kb))+ob/2—(yb/ m)cos(a/ k)]
/4

and L.(a)=L.(-c).
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Figure 1: The coordinate system used to define the step and the adjoint problem
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Figure 2: Schematic of the first decomposition which satisfies the boundary conditions on y,=b,y;<0 and

v=0y,>0.
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Figure 3: Schematic of the second problem that satisfies the boundary conditions on the face of the step.
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Figure 4: The Directionality of sound from sources near a backward facing step at a Mach number of
0.02. Levels are normalized by k,b and 50dB has been added to ensure positive values on all plots. —x-x-
k,p=0.01, -0-0-k,b=01, -+-+- k,b=1
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Figure 5: The Directionality of sound from sources near a forward facing step at a Mach number of 0.02.
Levels are normalized by k,b and 50dB has been added to ensure positive values on all plots. —x-x-
k,b=0.01, -0-0-k,b=01, -+-+- k,b=1
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Figure 6: The Directionality of sound from sources ncar a backward facing step at a Mach number of 0.2.
Levels are normalized by k,b and 50dB has been added to ensure positive values on all plots. —x-x-
k,b=0.01, -0-0-k,b=01, -+-+-k,b=1
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Figure 7: The Directionality of sound from sources near a forward facing step at a Mach number of 0.2.
Levels are normalized by k,b and 50dB has been added to ensure positive values on all plots. —x-x-
k,b=0.01, -0-0-k,b=01, -+-+- k,b=1
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Figure 8: The Greens function as a function of kb for a forward facing stcp at a Mach number of 0.2 at
three different angles 8=56.5°.82.5°,106°, and 128.5°
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Figure 9: Comparison of measurements by Catlett(2010) and the predietions based on the Greens funetion
developed in this study.
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Part 3: Predictions of Surface Pressure Spectra for a Turbulent Boundary
Layer

3.1 Introduction

This part of the report will discuss a method for extracting velocity and surface pressure speetra
associated with a high Reynolds number turbulent boundary layer. The approach is to develop a
description of the turbulent veloeity fluctuations based on the solutions to the Orr Sommerfeld
and Squire equations and to use these to model the distribution of turbulent stresses within the
flow in terms of a set of unknown coefficients. If the distribution of the turbulent stresses is
available, cither from measurements or RANS ealeulations, then the model can be inverted to
obtain the unknown coefficients and closure is obtained.

This approach has been applied to the flow in a turbulent boundary layer downstream of a
forward facing step based on the measurements of Awasthi ef al 2011. The modeling has
identified terms associated with large scale structures in the flow and small seale turbulenee, and
an energy budget for each term has been obtained as shown in Figure 7. Another output of the
model is the turbulent veloeity spectra and these are compared to measured speetra at three
heights above the wall in Figure 8. The interesting result is that by using the viscous equations
with non linear interactions allowed for, the spectra are estimated over a wide range of
frequeneies without recourse to a modeled turbulence energy spectrum.

3.2 Theoretical Background

In the following we will eonsider methods for evaluating the unsteady part of a fully developed
turbulent flow. We will limit consideration to incompressible constant temperature flows and
assume that the mean flow is known from a solution to the Reynolds averaged Navier Stokes
equations. The flow is defined by its steady veloeity and pressure U and P and its unsteady
veloeity and pressure u and p. The equation of motion deseribing the unsteady flow is obtained
by subtracting the Reynolds average cquation for the steady flow from the full Navier Stokes
equations, to give

(1)
du

—+(U.V)u+(u.V)U+le—LV3u=—b Vau=0
or p R

b=(uV)u-{(uV)u)

(4

The left side of this equation is linear in the unsteady flow variables and the veetor b specifies
the contributions from the non linear terms. In the following we will also need a Poisson
equation for the pressure, which is obtained in the usual way by taking the divergenee of
equation (1), and the vorticity equation, which is obtained fro the curl of equation (1)
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We will consider veloeity perturbations u=(x,v,w) in a parallel shear flow defined, in Cartesian
coordinates (x,y,z) by the mean velocity Ufy) in the x direetion. The linearized form of the
Navier Stokes equations and the continuity cquation are used to obtain the Orr Sommerfeld
equation (sce for example Hallbick 1996) by taking the Laplacian of (1) for the veloeity
component in the y direction, subtracting Poissons equation for the pressure, and ignoring the
non linear term. However since the non linear terms are important in a fully developed turbulent
flow we will retain them here to give an inhomogeneous form of the Orr Sommerfeld equation as
= (2)
Do 2 » 0V l 4. _ _\2 ’
5 (V:v)=U E RFV v=-V°b +(Vb)

where the primes represent differentiation with respeet to the y direetion, D,/Dr=06/0t+Ué/6x, and
b=(b.,b,,b.). The u and w components of the veloeity can be obtained by considering the vorticity
in the y direction, given by n=du/dz-ow/dx, and the continuity equation (Hallback (1996)). The
equations for the # and w velocity components are then given in terms of the normal veloeity and
the normal vorticity as

)
du Jdu_ v dn dw dw v I

e =— i i

ox’ * FE dxdy 0z ax* 97 dzdy dx

To close this set of equations we use the vorticity equation to obtain an inhomogeneous form of
Squires equation for the normal component of the vorticity as

4)

By 1 .a av
———-—Vn+U’'—=-Vxb
Dt R L Jz

These homogeneous form of these equations have been considered by many different authors
(see for example Drazin and Reid(1981), Hallback (1996) for reviews) to investigate flow
instabilities and boundary layer transition. Solutions have been sought that identify the growth or
deeay of disturbanees and it ean be shown that, in the inviseid ease, the amplitude of the normal
component of the veloeity grows linearly with time from an initial disturbance. Also it ean be
shown that a boundary layer flow will be unstable if the mean veloeity profile in¢ludes a point of
inflexion. However in this study we are interested in using lincar theory to deseribe a high
Reynolds number fully developed turbulent flow, which is characterized as stationary in time and
homogeneous in the x and z dircetions. On this basis we will seek solutions in the
frequency/wavenumber domain by considering the Fourier transform of all variables, defined as

(5)
. { L R R -
fowap=——| | | fryzne e idd
(2r) -T -R -R

Taking the Fourier transform of the inhomogeneous Orr Sommerfeld and Squire equations then
gives

(6)
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(aU +@)("- ,120)—au"o—RL(o""—z,lzou A0y =B

€

(U +w)n+ pU - RL(ﬁ”_ 2'm=C

€

A =al+p? B=iA’b +ab, + b, C=-Pb, +ab.
and the # and w components of the velocity are defined as
(7
l;:"(aV:ﬂU) v%:_'(ﬂ":'an)
A A

This provides a closed set of equations which may be solved to obtain all the velocity

components of thc flow in terms of the unknown functions B and C . We will start by solving for
the normal velocity, which can be considered independently, and then consider the normal
vorticity, which depends on the distribution of normal velocity. With these two results we can
then obtain the velocity components parallel to the mean flow given by equation (7).

3.3 The Normal Velocity

In order to solve equation (6) we need to specify the details of the mean velocity profile in the
boundary layer. This has a discontinuity in its slope at the interface between the viscous sublayer
and the log layer, and so we will treat the viscous sublayer and the log layer as separate regions.
In the viscous sublayer the non linear terms on the right of equation (6) can be considered small
compared to the viscous terms, and the velocity profile is linear, so the equation (6) reduces to its
homogeneous form and will depend on the boundary conditions on the surface and at the
interface with the log layer. The OS equation is of fourth order and so four boundary conditions
will be required to specify the flow in the viscous sublayer. These are that v and v' should be zero
on the surface, and the v and v' should be continuous across the interface with the log layer
where y=y,.

In the log layer we will seek a solution using the Greens function for the OS equation which is
the solution to

| (8)
(aU + )G - A*G)—aU”"G - R%(G”" —202G”+ A*G)=8(y-y,)
and satisfies the same boundary conditions as v at y=y, and at infinity. Giving the normal
vclocity as
9)

=3

vy)= I B(y)G(y1y,)dy,

v,
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3.4 The Normal Vorticity

The solution for the normal vorticity is obtained using the same approach as above. From the
second equation in (6) we obtain
(10)

fi=[ (€= BUGIGNG, (v 1y,)dy,

where G, is the Greens function that satisfies the equation

(11
(@+aU)G,(313) = 2=(Gy1 )= 26, (3 ) =8(y~,)

In this case there are two contributing source terms. The first is from the non linear term C that
acts as a source of normal vorticity and the second is from the interaction term associated with
the normal velocity. We can combine equations (9) and (11) for the interaction term to give

(12)

i, == | B(:,)G,(y1y,)dy,
G.(yly,)= {I BU'(yI)Gn(.VI.vI )G(y, I)’2)d.v|}

3.5 The Greens Functions

The Greens functions defined above are shown in figures 1-3 for different frequencies and
wavenumbers. In all cases the spatial resolution was set as dy=1/500 and the number of terms in
the Fourier series expansion limited to 50. The boundary layer mean velocity profile was given
by U=y'”, and the Reynolds number was 5x10°.

In figure 1 the Greens function for the OS equation and the interaction term are compared for a
non dimensional frequency of @=1 and wavenumbers a=—1.285 and 3=1.1t is seen that the
impact of a source term (in this case the non linear term B) at any location y, has a non local
impact on the flow, which indicates the possibility of a large scale structure. We note that at this
frequency the interaction term that drives the normal vorticity 1s of a much lower level than than
the Greens function driving the normal velocity. However at lower frequencies as shown in
figure 2, the interaction term dominates.

In figure 3 we show the Greens function for Squires equation that shows how the normal
vorticity is driven by the non linear source term C. In this case we see that there is only a local
reaction, and the impact of the source term is very local. This implies that this term is responsible
for the small scale turbulence in the flow and is not associated with large scale structures.

40



3.5 Large scale Structures and Small Scale Turbulence

In the previous section it was shown that the unsteady part of the Reynolds average equations
can be solved by assuming that the non linear terms are small and act as sources of disturbance to
the larger linear terms. By evaluation the solutions to these equations it was found that there are
two components driving the flow, one that has a broad non local impact and another that only
impacts the flow locally. In the following we will consider these two different terms as
representing the large scale structures in the flow and the small scale turbulence. The small scale
turbulence only couples with the vorticity normal to the wall and only has velocity components
parallel to the wall. In contrast the large scale structures have velocity and vorticity components
in all three directions.

We will assume that the flow may be broken down into large scale structures and small scale
turbulence, and that the large scale structures propagate with their own phase speed ¢, and that
the non linear terms associated with each structure can be superposed such that

(13)

.
B(t.x.y.2)= 3, AB(t-x/c,y,2)

k=1

where O<c, <1, A, represents the amplitude of the structure and B,(1,y,z) is the distribution of the
non linear terms for the large scale structure of order k. Using this model we can define the
source terms in equation (6) as

(14)
A K A~
B(y,0.a,p)=), AB.(y.w.pda+w/c,)
k=1
and it follows that the normal velocity is given by
(15)
- e K
van=[ [ ¥ av,.ope P dodp
. —oo k=]
where
(16)
R A
v0ho.p) =] Bo.0.BGKy], .
Similar expression can be obtained for 7, and the velocity components « and w by utilizing
equation (12) and (7).
Summarizing the results gives the velocity field as
(7)

z
u(x,r) = Z Au (t—x/c.y.0)+u(t.x,y2)
k=1
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where u, is the velocity perturbation associated with each large scale structure and u, is the
velocity of the small scale turbulence, and we can define

(18)
wx0=[ | ,0.0p) " dodp
u (x,r)= j j j i (y.0,0,B)e ™ " dodadp
where
(19)
o, = (1,9, W,) i, = il ;ﬁnk) Wy = s :-ank)
A a=-wlic, A' a=—w/c
with
(20)
R ~
nk(.v*w’ﬁ) = _J. Bk(yl'w’ﬁ)[GV(-v I y' ]a:—w'q d'vl
and for the small scale turbulence
(21)
& e o . _|iBn, . | —iom, . 1o
ll, = (u, quW;) u., = [?}ar—w"' W‘) = [T:]a=_w;‘ ]]‘ = :': C(yl )Gn(y | -VI )dyl

An example of the velocities associated with a large seale structure is given in Figure 4 where it
is seen that at this frequency and wavenumber all three components are of similar magnitude. At
lower frequencics the normal velocity is relatively smaller, and at higher frequencies the normal
veloeity dominates the result.

3.6 Modeling the Non Linear Terms and Statistical Averages

3.6.1 Non Linear Terms

The non linear terms in the above analysis are unknown and so we must resort to some type of
modeling to approximately account for their characteristics. The non linear terms may be both
sources and sinks of energy and we must delineate between these effects. The reduction of
energy in the flow can be modeled in the same way that we model non linear turbulent flow
terms in the steady RANS equations, by introducing an eddy viseosity of the viscous term on the
left of the OS equation and Squires equation. The sources, or production terms, remain on the
right and it is these that we will model here.

We will assume that the non linear terms are dominated by the small seale turbulence, which
feeds the large scale structure, and model the non linear term as
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(22)
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where n, and n, are modeling coefficients, which are found to be n,=n,=2 from comparison with
experimental data.

3.6.2 The Turbulent Kinetic Energy

For the large scale structure modes we can define the turbulent stresses at the location y by
averaging velocity at a fixed point. Since the flow is statistically stationary in time and
homogeneous in x and y, different frequencies, wavenumbers and modes must be uncorrelated
and we obtain

(23)

= e K
o.M=ElvixnPl={ [ Y allv.0pF dodp

—o  —o k=l

Similar expression can be defined for the other velocity components and the turbulent kinetic
energy for the large scale structures is given by

(24)
° e« K
K,(y)=— j [ Y A (1u0.0.8F +1v0.0.8)F +w(y.0p)1)dodp
—o =00 k=l
The total kinetic energy is then given by
(25)
K =K,()+K(y)
where K, is the kinetic energy of the small scale structures.
Similarly the spectrum of the velocity fluctuations is given by
(26)

Lo K
S\"'(“”-")=J 2 Allv,(v,o0,B)) dB

o k=1

To evaluate these expressions we need to accurately integrate over the wavenumber 8. We can
show that all terms in the integral are a function of / and so the integrals can be carried out over
the half range O<f<. Furthermore to reduce the computational effort we can use logarithmic
steps in wavenumber to extend the integration over a wider range of wavenumbers for a given
number of computations.

3.6.3 Surface Pressure Spectra

The surface pressure spectrum can be calculated from the solution to Poissons equation
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It is argued that the linear term will be of order U/u larger than the non linear term on the right
side of this equation, and since this is directly proportional to the normal velocity, it follows that
the surface pressure is determined exclusively by the large scale structures in the flow because
the small scale turbulence is parallel to the mean flow. This has important modeling implications
because it implies that the convection speed of the large scale structures vary from near zero to
the outer stream velocity. However it does not relate the scale of the large scale structure to its
convection speed because nothing has been assumed about the scale of the structure in the x
direction.

To obtain the surface pressure we first need to solve equation (27) subject to the boundary
condition that p’=0 on y=0. If the non linear tem is ignored in comparison with the linear term
then we obtain

(28)
ks -1 T . [ ke —Aly-y, —A(y+y,
P == ipal (y)b(y e ™™ +e 0 )dy,
202
Then using the expansion in equations (17-19) the surface pressure becomes
(29)
= T | -ipat o, A —ion
ro=X A | | =] veomoe? ¢ dydPdw
k=1 e == 0 a=-w/c,
These results can also be used to calculate the frequency spectrum of the surface pressure
fluctuations. Since the modes are uncorrelated this is defined as
(30)
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3.7 Comparison with Experimental Results

The model given here was compared to experimental measurements made in the stability wind
tunnel at Virginia Tech, as reported Awasthi et al (2011). We will present results for a fully
developed turbulent boundary layer with a Reynolds number of 1.73x10°. The mean velocity
profile and the turbulent stresses as a function of displacement from the wall are shown in figure
5. To compare the measurements to the theoretical model we still need to define the unknown
coefficients A,. To find these we can use equation (23) for the normal turbulent stress and use a
least squares algorithm to fit the data to the model. The algorithm must be constrained so that
A,’>0 and the number of coefficients must be less than the number of measurements points to
obtain a converged result. Figure 6 shows the amplitude of each structure verse¢s mode order k,
and it is seen that the energy is distributed across the modes and no one mode dominates. The
strongest contribution is from mode order 2, but this is only a factor of 2 above the other modes.
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With these coefficients we ean now estimate the turbulent kinetic energy (tke) from the large
scale structures using equation (24). The result is shown in figure 7 and is compared to the
measured tke. The difference is attributed to the tke from the small scale structures and this is
also shown in figure 7. The result indicates that the energy is the small scale structures dominates
the tke budget by a factor of about two.

As an independent check on the validity of the results we ean also calculate the spectrum of the
normal velocity using equation (26) and this is compared to the measured results in figure 8 at
three different locations in the boundary layer. The speetral shape appears to be well modeled by
this approach, and is an interesting result beeause no speetral modeling or lengthscales have been
required to make this ealculation.

The predietion of the unsteady flow have also been applied to a boundary layer downstream of a
forward faeing step as measured by Awasthi et al (2011). Figure 9 shows the boundary layer
profile and the distributions of turbulent stresses at nine step heights downstream of the step. The
profiles are distinetly different from those for the undisturbed boundary layer shown in figure S.
The breakdown of the tke between small and large scale turbulence is shown in figure 10, and
this is clearly dominated by the large scale structure tke as distinct from the small scale tke. This
gives an important eontrast to the results for the undisturbed boundary layer that was dominated
by the small seale tke. In figure 11 the spectra of the vertieal veloeity fluetuations is given at
three different heights in the boundary layer. In this ease the spectra show significant level
differenees at different loeations across the boundary layer, and the theory follows the trend in
the measurements, as well as providing the speetral shape. In contrast the results for the
boundary layer 36 step heights downstream of the step (figure 12) show that the vertieal veloeity
speetra are similar at all locations, similar to the undisturbed boundary layer.

Finally in figure 13 wc show the estimates of the surface pressure speetra for the undisturbed
boundary layer, and the boundary layer at 9 and 36 step heights downstream of the stcp. Given
the good predictions of the vertical velocity one might expect the surfaee pressure speetra to be
well predieted as well, given the relationship specified by equation (30). However the only
reasonable prediction is for the undisturbed boundary layer at low frequencies. However, the
analysis given here, and the measurements have only ineluded the turbulenee in the outer part of
the boundary layer and have not eonsidered the viseous sublayer and the log law region, whieh
are closest to the wall and will dominated the terms in equation (30). It is not surprising thereforc
that the predieted surface pressure speetra, that are dominated by near wall effeets, are not well
predieted by this method.

3.8 Conclusions

In this study we havc made usc of the unsteady part of the RANS equations to model the flow in
a boundary and downstream of a forward facing step. It has becen shown that the flow can be
brokcn down into large and small scale turbulencc. The large scale turbulent structures are
eonveeted at their own fixed speed, while the small seale turbulence is uncorrelated from point to
point in the vertical direction, and convected at the local flow speed. The energy balance
between thesce two mechanisms is dominated by the small scale turbulence for the undisturbed
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boundary layer, but in the case of the flow down stream of a step results are quite different. At 9
step heights downstrcam of the stcp the large scale turbulence dominatcs, indicating that the
disturbances generated by the step are dominating the flow.

While the estimates of the vertical velocity compare well with the measurements, the surfacc
pressure spectra at different locations downstream of the step are not as well cstimated. The
explanation for this is that the model has not included the inner layers wherc the turbulent
structurcs are expected to dominate the surface pressure fluctuations.
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Figure 1: The Greens functions for a boundary layer flow at a Reynolds number of 5x10°,
frequency w=1 and wavenumbers a=-7.285,B=1. Left figure is the Greens function for the OS

equation, right figure is the interaction Greens function defined by equation (12).
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Figure 2: The Greens function for Squires equation for a boundary layer flow at a Reynolds
number of 5x10°, frequency =1 and wavenumbers a=-1.285,5=1.
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Figure 3: The Greens functions for a boundary layer flow at a Reynolds number of 5x10°,
frequency @=0.1 and wavenumbers a=-0./285,3=1.Left figure is the Greens function for the OS
equation, right figure is the interaction Greens function defined by equation (12).
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Figure 4: The three velocity components for a large scale structure at w=10,0=-12.85, =10 red
is v, black is u, blue is w
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Figure 5: The upper figure shows the boundary layer mean velocity profile measured in the VT
Stability wind tunnel at a Reynolds number of 1.73x10° . the lower figure shows the measured
turbulent stresses. Red is v/, green is w’ and black is 1’
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Figure 6: The velocity mode amplitudes for a boundary layer flow at a Reynolds number of
1.73x10°.
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Figure 7: The turbulent kinetic energy budget for a boundary layer flow at a Reynolds number of
5x10° showing the breakdown between the energy in the large scale structures and small scale
turbulence.
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Figure 8: The normal velocity spectra for a boundary layer flow at a Reynolds number of
1.73x10’ at three different location in the boundary layer. Lines are experimental measurements
and dots are the model estimates.
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Figure 9: The upper figure shows the boundary layer mean velocity profile measured in the VT
Stability wind tunnel 9 step heights downstream of a forward facing step, at a Reynolds number
of 1.73x10° . The lower figure shows the measured turbulent stresses. Red is v7, green is w’ and

black is .
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Figure 10: The turbulent kinetic energy budget for a boundary layer flow 9 step heights
downstream of a forward facing step at a Reynolds number of 1.73x10° showing the breakdown
between the energy in the large scale structures and small scale turbulence.
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Figure 11: The normal velocity spectra for a boundary layer flow 9 step heights downstream of a
forward facing step at a Reynolds number of 1.73x10° at three different location in the boundary
layer, y/6 =0.0672,0.2353,0.5379. Lines are experimental measurements and dots are the model
estimates.
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Figure 12: The normal velocity spectra for a boundary layer flow 36 step heights downstream of
a forward facing step at a Reynolds number of 1.73x10° at three different location in the
boundary layer, y/6 =0.0672, 0.2353,0.5379. Lines are experimental measurements and dots are
the model estimates.
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Figure 13: The surface pressure spectra for a boundary layer flow. Black line (measurements)
and (predictions) dots are for the undisturbed boundary layer, blue line (measurements) and
(predictions) dots are at 9 step heights downstream of a forward facing step, and red line
(measurements) and (predictions) dots are at 36 step heights downstream. All cases are at a
Reynolds number of 1.73x10° at three different location in the boundary layer, y/& =0.0672,
0.2353,0.5379.
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